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The uniqueness theorem of Simon & Ursell (1984), concerning the linearized two-
dimensional water-wave problem in a fluid of infinite depth, is extended in two
directions. First, we consider a two-dimensional geometry involving two submerged
symmetric bodies placed sufficiently far apart that they are not confined in the
vertical right angle having its vertex on the free surface as the theorem of Simon &
Ursell requires. A condition is obtained guaranteeing the uniqueness outside a finite
number of bounded frequency intervals. Secondly, the method of Simon & Ursell
is generalized to prove uniqueness in the axisymmetric problem for bodies violating
John’s condition provided the free surface is a connected plane region.

1. Introduction
In studies of water waves interacting with obstacles the question of uniqueness in

the linearized problem is not yet fully answered despite its importance (see Ursell 1992,
where this problem is placed first in the list of unfinished problems). The difficulty of
the problem may be illustrated by the fact that during the forty years between 1950,
when the pioneering papers by John (1950) and Ursell (1950) appeared, and 1990
only a dozen works were published on this topic (see the survey in McIver 1996).

In the last decade several results concerning the uniqueness and the existence of
trapped modes (non-trivial solutions to the homogeneous boundary value problem,
which lead to non-uniqueness in the non-homogeneous problem) have been obtained
for obstacles separating a bounded portion of the free surface from infinity. The
work in this direction was initiated by Kuznetsov (1988), who considered the two-
dimensional problem for a pair of surface-piercing bodies subjected to rather strong
geometrical restrictions. He demonstrated that the solution is unique for all frequencies
below a value which depends on the geometry. This result was extended in Kuznetsov
& Simon (1995a, b) and Simon & Kuznetsov (1996), where more two- and three-
dimensional geometries were considered. However, all these papers contain restrictions
on the single interval of frequencies in which uniqueness holds.

The reason for these restrictions became clear when McIver (1996) constructed
the first example of a trapped mode for the two-dimensional problem. She applied
the so-called inverse procedure which replaces seeking the eigenfrequencies for a
given geometry by generating a two-body structure using an explicit potential. The
latter involves two sources which do not radiate any waves to infinity (special
spacing is chosen for this purpose) and has streamlines such that two of them can
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be interpreted as contours of surface-piercing bodies containing sources inside. The
potential introduced by McIver (1996) would be deemed to be the lowest symmetric
mode which may occur between the bodies. Kuznetsov & Porter (1999) considered
higher symmetric as well as antisymmetric modes of the same type. These modes
allow the construction of trapping structures consisting of more than two surface-
piercing bodies. McIver & McIver (1997) constructed an example of non-uniqueness
for the axisymmetric problem using the same method. Their result was extended by
Kuznetsov & McIver (1997), who considered more examples of trapped modes arising
in the presence of an axisymmetric surface-piercing toroidal body. These examples
are in agreement with the theorem proven in the same paper and providing an infinite
series of uniqueness intervals for all azimuthal modes. A similar theorem in two
dimensions is published in Linton & Kuznetsov (1997). The latter theorem as well as
examples of trapped modes from Kuznetsov & Porter (1999) are generalized to the
case of oblique waves by Kuznetsov et al. (1998).

The uniqueness proofs in Linton & Kuznetsov (1997) and in Kuznetsov et al. (1998)
rely essentially on two assumptions: (i) there are two surface-piercing bodies which
are mirror reflections of each other in a vertical axis; (ii) John’s condition must hold
between the bodies. The first condition allows symmetric and antisymmetric solutions
to be treated separately, and both conditions are used in a version of John’s technique
applied in the proofs. It involves a function having the form of an integral along
vertical lines emanating from the inner part of the free surface, and the integrand
depends on a solution to the homogeneous problem. Manipulations with this function
allow an estimation of the potential energy between bodies from the kinetic energy
strictly below the inner part of the free surface. Combining this estimate with that of
Simon & Ursell (1984) for the exterior part of the free surface, one gets a contradiction
proving that the solution is trivial. The first aim of the present paper is to show that
more a sophisticated combination of the method developed in Linton & Kuznetsov
(1997) with that of Simon & Ursell (1984) gives the possibility of extending the result
of the latter paper, which states that the uniqueness theorem holds for an arbitrary
number of arbitrary shaped bodies confined within a vertical right angle having its
vertex on the free surface. Here we demonstrate the uniqueness theorem for a pair
of submerged bodies symmetric about a vertical axis but having parts outside that
angle. However, certain restrictions on the frequency must be imposed, but they give
uniqueness intervals different from those in Kuznetsov & Simon (1995a, b).

The second result presented here is the generalization of Simon & Ursell’s (1984)
method to the axisymmetric water-wave problem for a body violating John’s condition
provided the free surface is a connected plane region.

The contents of the paper are as follows. In § 2 we prove the uniqueness result in
two dimensions. Section 3 is devoted to the proof of uniqueness in the axisymmetric
problem. The results obtained are discussed in § 4.

2. Uniqueness in the two-dimensional problem
The present section is concerned with the two-dimensional irrotational motion

of an inviscid incompressible heavy fluid. Surface tension effects are neglected. The
motion is assumed to be time-harmonic and of small amplitude. Thus, a velocity
potential exists and can be written in the form Re

{
Φ(x, y)e−iωt

}
. Here (x, y) are

rectangular Cartesian coordinates with origin in the mean free surface, and with the
y-axis directed upwards.

We denote by S+ a piecewise smooth contour submerged in deep water so that any
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Figure 1. A defintion sketch of the geometry.

vertical line on the left of x = b (b > 0) does not intersect S+, and a vertical line x = c
intersects this contour for any c, belonging to a certain finite interval with the left
end-point b. Furthermore, we assume that S+ lies below y = −x+b0, where 0 < b0 6 b
(the case b0 = 0 was considered in Simon & Ursell 1984). We put b∗ = min b0, where
the minimum is taken over all b0, such that y = −x + b0 is above S+. In order to
generalize the theorem proved by Simon & Ursell (1984) we have to assume that
b∗ > 0. Let S− be the reflection of S+ by the y-axis. We denote by W the whole fluid
domain, that is, W = R2−\(D+ ∪ D−), where R2− = {−∞ < x < +∞, y < 0}, and
D± is enclosed in S±. Let W0 be the semistrip {|x| < b0, −∞ < y < 0}, and W∞ be
the union of two parts of W : one lying to the right of y = −x + b0, and the other
one to the left of y = x− b0. The geometry described is shown in figure 1, where the
boundaries of W0 and W∞ are shown by dashed lines.

The two problems arising in applications of the radiation and scattering of waves
by a set of rigid bodies are formulated as a linear boundary value problem in
which ∂Φ/∂n is prescribed on the wetted surface of the bodies. Then the question
of uniqueness reduces to a demonstration that the difference u = Φ1 − Φ2 of two
solutions vanishes. In the case under consideration the function u (it is assumed to be
real, because otherwise its real and imaginary parts must be considered separetely)
must satisfy the following homogeneous equation and boundary conditions:

∇2u = 0 in W, (2.1)

uy − νu = 0 on F, (2.2)

∂u/∂n = 0 on S. (2.3)

Here ν = ω2/g, g is the acceleration due to gravity, F denotes a free surface
{−∞ < x < +∞, y = 0}, and S = S+ ∪ S−.

The problem (2.1)–(2.3) must be complemented by the radiation condition. However,
it is well-known (see, for example, Simon & Ursell 1984) that a solution to the
homogeneous water-wave problem satisfies the following condition:∫

W

|∇u|2 dxdy + ν

∫
F

|u|2 dx < ∞, (2.4)

which means that the kinetic and potential energy are finite. Moreover, Green’s
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formula gives for u: ∫
W

|∇u|2 dxdy − ν
∫
F

|u|2 dx = 0. (2.5)

Using the symmetry of the water domain W we can decompose u into the sum of
a symmetric part u(+), and an antisymmetric part u(−) defined as follows:

u(±)(x, y) = ±u(±)(−x, y).

It is obvious that

u(+)
x (0, y) = 0, u(−)(0, y) = 0. (2.6)

The considerations in § 5 of Simon & Ursell (1984) (in particular, see equations
(5.10)–(5.12) on p. 146 in their paper) imply that:

ν

∫
F∞
|u(±)|2 dx <

∫
W∞
|∇u(±)|2 dxdy, (2.7)

where F∞ = {|x| > b0, y = 0}.
As in Linton & Kuznetsov (1997) we introduce

w(±)(x) =

∫ 0

−∞
u(±)(x, y)eνy dy

on the part of the free surface {−b < x < b, y = 0}. Using integration by parts and
the free surface condition (2.2), it is shown in Linton & Kuznetsov (1997) that

w(±)
xx + ν2w(±) = 0 for − b < x < b.

Then (2.6) implies that

w(±)(x) = C± cos
(
νx− π

4
± π

4

)
,

where C± are real constants. Integration by parts in

C± cos
(
νx− π

4
± π

4

)
=

∫ 0

−∞
u(±)(x, y)eνy dy (2.8)

leads to

u(±)(x, 0) = νC± cos
(
νx− π

4
± π

4

)
+

∫ 0

−∞
u(±)
y (x, y)eνy dy,

from which

|u(±)(x, 0)|2 6 2

[
ν2C2

± cos2

(
νx− π

4
± π

4

)
+

(∫ 0

−∞
u(±)
y (x, y)eνy dy

)2]
.

Applying the Schwarz inequality to the last integral we get

ν|u(±)(x, 0)|2 6 2ν3C2
± cos2

(
νx− π

4
± π

4

)
+

∫ 0

−∞

∣∣u(±)
y (x, y)

∣∣2 dy. (2.9)

On the other hand, we have from (2.8),

−νC± sin
(
νx− π

4
± π

4

)
=

∫ 0

−∞
u(±)
x (x, y)eνy dy,
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which implies that

2ν3C2
± sin2

(
νx− π

4
± π

4

)
6

∫ 0

−∞

∣∣u(±)
x (x, y)

∣∣2 dy. (2.10)

Let us assume that

π
(
m+ 1

4
± 1

4

)
6 νb0 6 π

(
m+ 3

4
± 1

4

)
, m = 0, 1, . . . , (2.11)

which is equivalent to∫ b0

0

[
cos2

(
νx− π

4
± π

4

)
− sin2

(
νx− π

4
± π

4

)]
dx 6 0.

Then integrating (2.9) and (2.10) over F0 = {−b0 < x < b0, y = 0} under assumption
(2.11), we arrive at

ν

∫
F0

∣∣u(±)(x, 0)
∣∣2 dx 6

∫
W0

∣∣∇u(±)
∣∣2 dxdy.

Adding this inequality to (2.7) produces

ν

∫
F

∣∣u(±)(x, 0)
∣∣2 dx 6

∫
W0∪W∞

∣∣∇u(±)
∣∣2 dxdy.

This contradicts (2.5), which is true for u(±), unless u(±) ≡ 0 in W . Thus, the symmetric
(antisymmetric) solution is unique when ν satisfies (2.11), where the sign + (−) is taken,
and b0 belongs to [b∗, b].

Dividing (2.11) by b0, we see that putting b0 = b we get the best lower bound for ν,
equal to πb−1

(
m+ 1

4
± 1

4

)
. Similarly, putting b0 = b∗ we get the best upper bound for

ν, equal to πb∗−1
(
m+ 3

4
± 1

4

)
. Hence, the uniqueness is guaranteed for the symmetric

(antisymmetric) solution when the inequality

π(m+ 1
4
± 1

4
) 6 νb 6 π(m+ 3

4
± 1

4
)
b

b∗
(2.12)

holds with + (−), where m = 0, 1, . . ..
If b/b∗ > 1, then the above assertion implies that non-uniqueness might occur only

for ν belonging to a finite number of intervals. From (2.12) we see that if m+ is the
smallest non-negative integer, such that

(m+ + 1)
b

b∗
> m+ + 3

2
, (2.13)

then the right-hand end of the uniqueness interval (2.12) with m = m+ for the
symmetric solutions belongs to the similar interval with m = m+ + 1 . Hence, if m+ is
the smallest non-negative integer satisfying (2.13), then the non-uniqueness of symmetric
modes might occur only for ν belonging to the first m+ + 1 intervals defined by (2.12)
with the sign −. In particular, when b > 3b∗/2, the symmetric solution is unique for all
ν > 0 with the possible exception of the interval (0, π(2b)−1).

Similarly, if m− is the smallest non-negative integer satisfying

(m− + 1
2
)
b

b∗
> m− + 1,

then the non-uniqueness of antisymmetric modes might occur only for ν belonging to the
first m− intervals defined by (2.12) with the sign +. In particular, when b > 2b∗, the
antisymmetric solution is unique for all ν > 0.
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3. The axisymmetric problem in fluid of infinite depth
The method developed in Simon & Ursell (1984) relies on the use of the Cauchy–

Riemann type relation (see (5.3) in their paper). Since there are similar relations in
the axisymmetric case, one may expect the same idea to work in the axisymmetric
problem. Thus, we assume W to be an axisymmetric fluid domain, having no cusps
and zero-angled edges on ∂W , which consists of the free surface F = ∂W ∩ {y = 0},
and of an axisymmetric wetted rigid surface S . We assume that F is a connected plane
region, and a point x in this plane has coordinates (x1, x2), so that |x|2 = x2

1 + x2
2.

Let the velocity potential of the form u(|x|, y) be a solution to the homogeneous
problem (2.1)–(2.3). We assume u to be real without loss of generality. Since there
are no cusps and zero-angled edges on ∂W , the general results from the theory of
elliptic boundary value problems in piecewise smooth domains (see Kondrat’yev 1967;
Kozlov, Maz’ya & Rossmann 1997; and Nazarov & Plamenevsky 1994) yield that the
kinetic and potential energy of waves defined by u are locally finite in W . Then, (2.4)
holds, and as in § 2 we arrive at (2.5). Our aim is to derive an inequality contradicting
(2.5), which implies that the uniqueness theorem holds for the problem.

Consider the conical surface Sd generated by revolving the line

`d(β) = {(x, y) : y = (d− x1) tan β, x1 > d, x2 = 0, y < 0} (3.1)

around the y-axis, so that Sd has waterline intersection |x| = d, and the dihedral angle
between Sd and {|x| > d, y = 0} is equal to β ∈ (0, π/2]. Provided any bodies are
inside Sd, we have

0 =

∫
Sd

(
u
∂φ

∂n
− φ∂u

∂n

)
dS = 2π

∫
`d

(
u
∂φ

∂n
− φ∂u

∂n

)
|x| ds. (3.2)

Here φ(|x|, y) is an axisymmetric harmonic function in the water domain, which
satisfies the free surface boundary condition and is bounded as |x|2 + y2 →∞. Let ψ
be related to φ through the following equations:

∂φ

∂|x| = −∂ψ
∂y
,

∂φ

∂y
= |x|−1 ∂(|x|ψ)

∂|x| , (3.3)

which are similar to relations between the velocity potential and stream function in
the axisymmetric case. These equations lead to

|x|∂φ
∂n

= −∂(|x|ψ)

∂s
on `d,

where n and s are defined as follows. The vector s is directed along `d from infinity to
the plane {y = 0}, and (n, s) form a right-hand pair of vectors. Hence, we get from
(3.2) that ∫

`d

φ
∂u

∂n
|x| ds =

∫
`d

u
∂φ

∂n
|x| ds = −

∫
`d

u
∂(|x|ψ)

∂s
ds

= −du(d, 0)ψ(d, 0) +

∫
`d

ψ
∂u

∂s
|x| ds.

As in Simon & Ursell (1984), use of ψ has allowed an integration by parts. The result
is that u(d, 0) is expressed as an integral along `d; specifically,

du(d, 0)ψ(d, 0) =

∫
`d

(
φ
∂u

∂n
− ψ∂u

∂s

)
|x| ds. (3.4)
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Now, F = {|x| > dmin, y = 0} for some dmin which will be zero if all bodies are
fully submerged, but which will be non-zero if there is a body intersecting the free
surface. We wish to bound

ν

∫
F

|u|2 dx = 2πν

∫ ∞
dmin

|u(d, 0)|2d dd

in terms of
∫
Wc
|∇u|2 dxdy, where Wc ⊂ W , and is swept out by conical surfaces of

the family {Sd}. By (3.4) we must bound

νd|u(d, 0)|2 = ν

∣∣∣∣∫
`d

(
φ
∂u

∂n
− ψ∂u

∂s

)
|x| ds

∣∣∣∣2
d|ψ(d, 0)|2 (3.5)

in terms of
∫
`d
|∇u|2|x| dy. It is appropriate to put

φ(|x|, y) = eνyH (1)
0 (ν|x|) and ψ(|x|, y) = eνyH (1)

1 (ν|x|),
where H

(1)
0 and H

(1)
1 are Hankel functions. The formulae 9.1.30 in Abramowitz &

Stegun (1964) guarantee that φ and ψ satisfy (3.3). Then, taking into account (3.1)
we obtain

1

sin2 β

∣∣∣∣∣
∫
`d

[
H

(1)
0 (ν|x|)

H
(1)
1 (ν|x|)

∂u

∂n
+
∂u

∂s

]
eνy
|x|1/2H (1)

1 (ν|x|)
d1/2H

(1)
1 (νd)

|x|1/2 dy

∣∣∣∣∣
2

(3.6)

for the left-hand side of (3.5).

It is known that k
∣∣∣H (1)

1 (k)
∣∣∣2 is a monotonically decreasing function (see Gradshteyn

& Ryzhik 1980, 8.478).
This assertion and the Schwarz inequality imply that

νd|u(d, 0)|2 6 1

2 sin2 β

∫
`d

∣∣∣∣∣H (1)
0 (ν|x|)

H
(1)
1 (ν|x|)

∂u

∂n
+
∂u

∂s

∣∣∣∣∣
2

|x| dy. (3.7)

This means that we have to estimate∣∣∣∣H (1)
0 (ν|x|)

H
(1)
1 (ν|x|)

∂u

∂n
+
∂u

∂s

∣∣∣∣2∣∣∣∣∂u∂s + i
∂u

∂n

∣∣∣∣−2

, (3.8)

which is equivalent to finding

sup
X∈R
|X + p+ iq|2
|X + i|2 = 1 + sup

X∈R
2pX + c

X2 + 1
, (3.9)

where

H
(1)
0 (ν|x|)

H
(1)
1 (ν|x|) = p+ iq and c = p2 + q2 − 1. (3.10)

It is obvious that p = [J0J1 + Y0Y1]/|H (1)
1 |2, and

q = [J1Y0 − J0Y1]
/∣∣H (1)

1

∣∣2 = 2
/{
πν|x|∣∣H (1)

1 (ν|x|)∣∣2}. (3.11)

The last equality is a consequence of 9.1.16 in Abramowitz & Stegun (1964) for
Wronskian of Bessel functions, and hence, 0 < q < 1.
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The maximum in (3.9) occurs at Xm such that

2pXm + c = (c2 + 4p2)1/2 and X2
m + 1 = 2− c

p
Xm = (c2 + 4p2)1/2Xm

p
,

and so

sup
X∈R

2pX + c

X2 + 1
=
c+ (c2 + 4p2)1/2

2
.

Substituting c from (3.10), we find that the maximum in (3.9) is equal to

1 + 1
2

{
p2 + q2 − 1 +

[
(p2 + q2 − 1)2 + 4p2

]1/2 }
= 1

2

{
p2 + q2 + 1 +

[
(p2 + q2 + 1)2 − 4q2

]1/2 }
.

Substituting p2 + q2 from (3.10) and q from (3.11) into the above expression we get a
bound for (3.8), which together with (3.7) gives the following inequality:

νd|u(d, 0)|2 6 M

2 sin2 β

∫
`d

|∇u|2|x| dy,

where

M = 1
2

sup
X∈R

∣∣H (1)
1 (X)

∣∣−2

{∣∣H (1)
0 (X)

∣∣2 +
∣∣H (1)

1 (X)
∣∣2

+

([∣∣H (1)
0 (X)

∣∣2 +
∣∣H (1)

1 (X)
∣∣2]2 − 16

(πX)2

)1/2}
. (3.12)

This inequality implies that

ν

∫
F

|u|2 dx 6
M

2 sin2 β

∫
Wc

|∇u|2 dxdy.

If M/(2 sin2 β) 6 1, then this contradicts (2.5) unless u vanishes identically in W .
Thus, the following uniqueness theorem is proved.

Let W be an axisymmetric water domain, such that the free surface F is a connected
plane region. Let any cone Sd, obtained by rotation of the line (3.1) about the y-axis,
belong to W for {|x| = d, y = 0} ∈ F , and let M/(2 sin2 β) 6 1, where M is defined
by (3.12). Then the homogenous axisymmetric water-wave problem has only a trivial
solution.

It is obvious that the inequality M < 2 sin2 β is true for β = π/2, because in this
case the theorem of John (1950) guarantees the uniqueness. The constant M can be
evaluated numerically from (3.12), which gives M ≈ 1.2, and this maximum occurrs
at X ≈ 0.8. Hence, there exists a β0 such that 0.6 ≈ sin2 β0, that is, β0 ≈ 52◦, and if
β > β0, then the uniqueness theorem holds. More thorough calculation shows that
uniqueness is available if β > 52◦.

4. Discussion
Uniqueness has been established in the two-dimensional and axisymmetric water-

wave problems for infinite fluid depth, under different geometrical restrictions
generalizing those in Simon & Ursell (1984). Here we present a simple analysis
of the uniqueness conditions.
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We consider two-dimensional theorems first. Let S+ satisfy the assumptions of
theorems proven in § 2 with certain values of b and b∗. If the depth of submergence
of bodies increases whilst the spacing 2b remains the same, then b∗ decreases. Then,
the number of the frequency intervals of possible non-uniqueness becomes smaller,
and for sufficiently large depth of submergence the uniqueness holds for all frquencies
(when b∗ = 0). If the depth of submergence decreases, then the number of interals of
possible non-uniqueness increases and becomes infinite for b∗ = b, when the theorem
has the same form as in the case of surface-piercing pairs of symmetric bodies (cf.
Linton & Kuznetsov 1997).

When the depth of submergence remains constant and spacing decreases, we have
the same situation as in the case of increasing depth of submergence. However,
the smallest number of intervals of possible non-uniqueness might not be zero
and depends on the geometry. On increasing the spacing we increase b and b∗
simultaneously, leaving b− b∗ = const. Then, it follows from (2.13) that the number
of intervals of possible non-uniqueness increases.

To illustrate the uniqueness theorem for the axisymmetric problem we consider
an immersed sphere of radius a. If it is immersed less than half or half-immersed,
then uniqueness follows from John’s theorem. Let the centre of the sphere be placed
at y = −h, h > 0. Then, the theorem in § 3 provides uniquess for a more than
half-immersed sphere, when either

h 6 a cos β0 or a 6 h cos β0,

where β0 is defined in the end of § 3. In the former case the sphere is immersed
partially, and in the latter case it is immersed totally. In fact, any totally submerged
sphere is known to have the uniqueness property in the axisymmetric water-wave
problem as has been shown by Livshits (1974).

The authors are grateful to the referees, whose comments helped to improve the
presentation. N. G. K. would like to acknowledge the support of an EPSRC visiting
fellowship research grant, no. GR/L06645, and of Russian Programme ‘Integration’
(grant no. 589).
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